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Abstract 

Sampling bias contained in data of biological surveys is very common. Bias is clearly a function 

of roads, cities, rivers, or other physical features that determine accessibility of collectors, and 

many data sets of species are presence-only. We set out to estimate spatial sampling bias on a 

region, based on presence-only data, by explicitly incorporating information on these 

accessibility factors, and by considering a class of species that may share a common pattern of 

search. We also resort to the concept of species richness, in order to estimate, indirectly, number 

of individuals. We construct a probabilistic (multinomial) model that enables standard likelihood 

inference procedures to be implemented. Simulation scenarios for exploration of the model and 

experimenting with the estimation procedure are included. Illustrative examples over a region of 

Mexico with mammals and butterflies are also discussed. 

 

Introduction 

Specimens in biological collections constitute one of the largest sources of biological data in the 

world, in the order of 91.6 10×  specimens (Chalmers 1996). These collections were almost 

universally performed in a non-systematic way (Peterson et al. 1998; Soberón et al. 2000). There 

is seldom any attempt to perform taxonomic collecting following the rules of statistical sampling. 



 
 

Often the locations where a data point occurs and the intensity of effort are not controlled as in a 

traditionally designed sampling survey. This gives rise to the question of sampling effort over a 

region, or a bias in geographical space, induced by the way in that biological data is collected. 

The preceding concept of sampling effort is complicated further by the fact that many data sets 

of species are presence-only. This means that if sampling effort was spent at a location without a 

species being recorded, that effort is not necessarily tracked. 

 This paper deals with the issue of quantifying sampling effort for presence-only data. A 

fundamental notion to be exploited here is that of a class of species. This will be a group of 

species for which taxonomists share some common pattern of search. For example, mammals of 

certain sizes in a given region are similarly collected, using the same, general methods, reflecting 

the idiosyncrasies of mammalogists. The idea is that presence of a large ensemble of specimens 

in a region is an indicator of the sampling effort having been exercised there. This notion is not 

available when considering presences of a single species, such as when using presence-only data 

in the prediction of ecological niches (Graham et al. 2004; Peterson 2001).  

 Single-species data is inherently low density over an area, and because absences are not 

available, sampling effort cannot be precisely inferred. A similar notion of a class of species has 

been called upon for approaches to better simulate pseudo-absences in niche prediction 

methodology (Zaniewski et al. 2002) or to construct prediction models for the presence of a 

single species (Ferrier et al. 2002). 

 Figure 1 shows two examples of presence-only data regarding broad classes of species—

butterflies and mammals—over a region of central Mexico (roughly one-fourth of the country, 

spanning parts of the States of Coahuila, Aguascalientes, Durango, Guanajuato, Nayarit, Nuevo 

León, San Luis Potosí, Tamaulipas, Jalisco, and Zacatecas) that will be used to exemplify 

throughout. A 70 (longitude) by 54 (latitude) system of 5km grid points is defined on the region. 

The locations of main paved highways and large cities (population at least 40,000) are identified. 

For butterflies—an example to be fully developed below—we use a medium size database of the 

177 acknowledged species and subspecies of the Papilionid and Pierid butterflies of Mexico. 

This database originally referred to about 55,000 specimens and was obtained from visiting the 

25 most important museums in the world that hold Mexican collections. Data from an extensive 

literature review that probably covers most of the non-digitized holdings was also included. The 

data has been checked for taxonomic and geographical consistency. Llorente et al. (1998) 



 
 

present a full description of the database. The mammals database is a compilation, provided by  

the Comisión Nacional de Biodivesidad (CONABIO) of Mexico, of near 300,000 georeferenced 

specimens of 450 species of terrestrial mammals   

 It is quite apparent and natural that these presences tend to concentrate geographically 

around roads and towns (Bojórquez-Tapia et al. 1995; Soberón et al. 2000; Wohlgemuth 1998), 

and that the larger the town, the larger the concentration. Puerto Vallarta, in the lower-left 

corner, for example, displays a conspicuous larger amount of presences in its vicinity. 

Furthermore, there are distinct characteristics between both groups. Mammals appear to be 

collected in more remote areas than butterflies, and along secondary roads in addition to primary 

highways. 

 

Figure 1: Presence-only data for all butterflies (left) and mammals (right), in central Mexico. Black lines are 

main paved roads and flags indicate main cities. Soft lines are State boundaries. 

 

 

 Our main motivation in this work resides in the estimation of environmental sampling 

bias, a concept to be plugged-in directly into methodology for the prediction of a single-species 

niche as a function of environmental variables. The methodology we bear in mind was developed 

by Argaez et al. (2005); its software implementation is called BioP (www.cimat.mx/software). In 

this technique, geographical sampling bias is explicitly identified and required as input, with the 

purpose of constructing a niche using presence-only data for a single species. But the 

geographical sampling effort may be of interest in itself, for the planning of future explorations, 

or the assessment of the degree of knowledge of a particular region (Soberón et al. 1996), or for 

the generation of pseudo-absences in single-species niche predictions as in (Zaniewski et al. 

2002). 



 
 

 Two spaces are relevant, geographical space and environmental space. See (Hirzel et al. 

2002) for a detailed discussion on the role of these spaces and relationships in the context of 

areas of distribution. In what follows, we adopt a similar notation, some of it depicted in Figure 

2. The geographical region of study isG . We assume a regular square grid over G  of 

resolution d . The nodes in this grid are denoted by ig . The set P  consists of nodes where cities 

lie (or more generally, point sources of effort concentration such as biological stations, towns, 

etc.), and iκ  is a measure of the size (e.g. population) of a city located at node ir . The set L  

consists of nodes that track roads (or more generally, linear sources of effort concentration, such 

as coasts, river beds, trails, etc.). 

 The environmental (multidimensional) space associated withG , will be represented 

byE . Its distinct elements are 1 2, , , te e e… . The environment associated with node g  is denoted 

by ( )e gϕ= . 
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Figure 2: Grid over geographical space G, and notation used to describe linear and point concentrations of 

sampling effort. Quantities iκ  denote sizes of point sources, such as city population. 

Modeling 

Data consists of n  observed locations of presences of all species in the class. Physically, an 

observed presence record at a site occurs because two parallel processes that are taking place 

happen concurrently: (a) the site is visited by humans; (b) the class is detected because the class 

is present. These two processes can be clearly and distinctly identified with two different actors. 

The presence of the class is prescribed by biological factors, whereas the site visit and 

subsequent detection of a specimen is essentially due to human activity. The concept of sampling 

bias is identified directly with process (a) above, but observed data is a combined product of both 

effects. Our approach begins by regarding both of these processes as random (and independent), 

so that probabilities become natural tools of description. The key is to relate observed data to 

geographical bias via a probability model. 



 
 

 We conceive the notion of a mask over geographical/environmental space that can be 

defined from biological considerations. This mask is a subset of geographical space outside of 

which the occurrence of the class is impossible. For example, if the class is butterflies, it may be 

reasonable to assume that no butterfly populations can be found above an altitude of 4,000 

meters (stray individuals may sometimes occur in very unsuitable places). This would define the 

mask, as all points in geographical space with a smaller altitude. Notice that this pre-

specification of a mask is quite different from specifying a niche for a single species. Class 

information is cruder, and we assume that such mask can indeed be specified. Notice also that a 

site outside the mask can in fact be sampled by humans. The relevance of the mask is to specify 

that presences are restricted over the mask, thus providing a further possible reason for not 

having recorded a positive observation at a site when visited. 

 The key idea in our approach is to conceptualize the set of all site visits ever put into 

effect as a set of individual random trials, some of which have given rise to presence records and 

others which have not. A two-stage probability tree (Figure 3) may be used to describe the two 

concurrent processes that result in obtaining a presence record. In the first stage, humans select 

an environment for inspection at random. In the second stage, detection is produced at the 

selected environment depending on features inherent to the class of species. Each stage has 

associated probabilities for the possible outcomes; in the first stage the outcomes are the possible 

environments ( 1 2, , , te e e… ) and in the second stage, the possible outcomes are simply success-

failure, or 0–1 (either the class is detected or it is not). When a selected environment turns out to 

be outside the mask, then the result at the second stage is obviously a failure. Probabilities in the 

first stage will be denoted by ( ; )iS e γ  and probabilities at the second stage will be denoted by 

( ; )iD e η  and 1 ( ; )iD e η− . The parameters γ  and η  are introduced to allow for flexibility in the 

specification of probabilities. Suggestions for explicit forms of D  and S  will be given below. 
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Figure 3: Two-stage probability tree used to conceptualize sampling effort that has given rise to presence 

records (1) or lack of presence records (0). In the 1
st
 stage, collectors indirectly select an environment to visit, 

with probabilities that depend on physical accessibility. In the 2
nd
 stage, detection is success-failure, with 

probabilities depending on characteristics of the class of species as related to the sampled environment. The 

dotted arrow means an environment that lies outside the mask, which therefore cannot give rise to a presence 

record. 

 In order to generate the set of observed presences, a large, unknown number of site visits, 

N , is presumed to have been expended. Each of these site visits constitutes a trial that navigates 

through the probability tree described previously. In the end, only n  observed presences for the 

whole class are recorded, and these are distributed at random over environments within the mask. 

Site visits that concluded in “no presence detected” (either because the class was present but it 

was not detected, or because the environment was outside the mask) are not identified nor 

counted. Notice that it is important to keep track of multiple presences at a given site, because 

these can very well occur due to intense sampling effort and it is sampling effort we wish to 



 
 

estimate. In single-species niche prediction, multiple presences are often collapsed into a single 

determination of presence, impairing a legitimate analysis of effort. 

 The idealized random process described above is in fact a multinomial experiment. That 

is, N  trials are classified at random into one of several bins. One of these bins collects all zeros, 

N n−  of them. The other bins are labeled by the environments within the mask ( t  of them), and 

altogether add up to n  counts corresponding to the n  observed presence records. The 

probabilities of being classified into one of these latter “mask” bins are ( ; )iS e γ ( ; )iD e η , and the 

probability of being classified into the “zeros” bin is 
1

1 ( ; ) ( ; )
t

i ii
S e D eγ η

=
−∑ . Notice that 

although the number of bins may be quite large, all their probabilities are described with only 

two parameters, γ  and η . 

 Once probabilities have been specified through functions D  and S , the resulting 

probability model associated with the observations is thus multinomial. The parameters of this 

distribution are ,  ,γ η  and N . The main parameter of interest is γ  (because ( ; )S e γ  represents 

environmental sampling bias), so that N  and η  are technically nuisance parameters (in 

statistical inference jargon). The number of trials, N , is in fact unknown, unlike typical 

applications of the multinomial model. This will introduce special challenges for fitting the 

model based on observed data, which will be addressed when this multinomial structure is 

addressed in the next section. 

 By context and on empirical grounds, it appears sensible to let probabilities ( ; )S e γ  

depend on the physical and transportation infrastructure, that is, roads and cities. We resort to a 

quantification of collector “accessibility”, denoted by ( ; )C e γ , to describe how easily an 

environment e  can be approached or entered, from nodes in P  and L . There are many ways 

one might proceed to do this. We use a simple measure based on straight-line distances on the 

plane, but more elaborate measures could be easily considered, where other characteristics of 

terrain that affect accessibility could be incorporated such as mountain ranges, rivers, etc. Define 

the “distance” between two nodes as follows:  

 ( )
if

,
if

i j

i j

i j i j
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g g g g
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=
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− ≠
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where ⋅  denotes Euclidian distance in geographical space. This definition incorporates the 

discreteness of the grid; if two presences share a pixel, we arbitrarily assign the distance d  

because all we know is that they are within the corresponding square. Now define a linear 

combination of weighted sums of “road” and “city” terms, as follows: 

 ( )( ) ( )( )1 1

*( ; ) , ,
j j

j j j

g g

C g g g g gγ γ δ κ δ
− −

∈ ∈

= +∑ ∑
P L

. 

In this expression, a geographical point g  is examined, and its reciprocal distances to nodes in 

P  and L  are accumulated. The main ideas are that a geographical node close to a road network 

and/or a larger city has a larger accessibility index, and that the parameter γ  allows for 

differences in relative weights between P  and L . A similar notion of “environmental 

accessibility” is obtained by accumulating these geographical accessibilities, by setting  

 
{ }: ( )

( ; ) *( ; )
i i

i

g g e

C e C g
ϕ

γ γ
=

= ∑ . 

Once this measure of accessibility is established, rescaling to probabilities can be obtained by 

normalization. In this way, we let  

 ( ; ) ( ) ( ; )eS e C eγ τ γ γ= , 

where ( ) ( )
1

1
( ; )

t

e zz
C eτ γ γ

−

=
= ∑ . This is just saying that the probability of inspecting an 

environment is directly proportional to its accessibility. 

Specification of ( ; )D e η  is another matter, as its justification must lie in the realm of 

biology. Here, we require a way to describe the probability of detecting a specimen of the class 

of species, as a function of the environment. The way we propose to do this is to relate ( ; )D e η  

to the concept of abundance, via species richness for the class. 

Obtaining the number of individuals of almost any species in a region, with the exception 

of conspicuous plants, or large animals, is a very difficult practical problem. One way to get an 

estimation of number of individuals, to order of magnitude, is to resort to the canonical log-

normal approximation to the distribution of species abundance which has a long tradition in 

ecology (May 1975). Both theory and evidence suggest that, for many taxonomical groups, the 

number of individuals per species follow a log-normal distribution. Moreover, Preston (1962) 

proposed the “canonical hypothesis” that allows to fix one of the two parameters of the 

lognormal reducing it to a single parameter distribution. This allows calculation of the number of 



 
 

individuals in a community as a function of the number of species. Equations B.1 and B.2 in 

(May 1975) applied to each g  allow the estimation of the number ( )A g  of individuals in a 

community composed of ( )R g  species, as long as ( ) 1R g ≫  (in practice, at least 10 species) and 

the Canonical Hypothesis holds. Using the definition 1/ 2 2

0
erf( ) 2 exp( )

x

x t dtπ= −∫ , May gives  

 1/ 2 2( ) [2 / ln(2)] exp( )g gR g π ∆ ∆≃  (1.1) 

and  

 1/ 2 2( ) ( ) [ / ln(2)] exp(4 )erf(2 )g g gA g I g π∝ = ∆ ∆ ∆ , (1.2) 

where the parameter g∆ ,  which is related to the mode in the distribution of species abundance, 

can be used to solve implicitly for ( )A g  as a function of ( )R g . May (Equation B.3) suggests the 

further approximation 1/ 2 2[ / ln(2)] exp(4 )g gπ ∆ ∆ , but we used (1.2) in the calculations below. 

Species richness, ( )R g , is information that can be estimated using a variety of ways. For 

example, by regressing well sampled localities against environmental variables (Iverson and 

Prasad 1998; Lobo and Martin-Piera 2002; Wohlgemuth 1998). Soberón and Llorente 

(unpublished) obtained such a relation for the butterflies of Mexico, at a grid resolution of about 

10km ×  10km: 

 min( ) 100 0.0089 ( ) 0.0097 ( ) 2.70 ( ) 0.824 ( )R g Pre g Alt g Lat g T g= + − − −  

where Pre(g) = annual precipitation in mm, Alt(g) = average elevation in meters above sea level, 

Lat(g) = coordinates of North Latitude and min ( )T g  = Minimum monthly average temperature. 

This regression has an r
2
 = 0.68 

The essential point is that we assume ( )R g  over G  to be a known piece of information, 

and that abundance, ( )A g  can be deduced accordingly. This will provide the crucial connection 

needed between a biological concept and ( ; )D e η , which will ultimately enable us to say 

something about effort based on presence-only records. The deduction is, for each g , first solve 

(1.1) numerically for g∆ . Then substitute this value in (1.2), to compute ( )I g . A notion 

proportional to abundance at the environment e  is then obtained as  
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 Accepting this as a working approximation, we next postulate a form for ( ; )D e η  as a 

function of ( )A e . Striving for a parsimonious formulation (a one-dimensional parameter), we 

assume the probability of detecting a member of the class is equal to one if abundance exceeds a 

certain threshold. Below that threshold, the relationship is assumed to be proportional. This 

assumption amounts to specifying  

 

1
( ) if ( )

( ; )
1

1 if ( )

A e A e

D e

A e

η
η

η

η

 ≤
= 

 >


, 

so that 1/η  represents the threshold and η  the proportionality constant. 

 All things assembled result in a three-parameter multinomial model, that explains 

presence records for the class, using information contained in P , L , and ( )R g  over G . To 

grasp the significance of this probability model and the role of its parameters, we illustrate 

simulated presence records for the class “butterflies” over the region depicted in Figure 1. 

Environmental layers used are temperatures (mean, mean max, mean min, absolute min, absolute 

max), as well as precipitation, altitude, humidity, climate type, and soil type. The environmental 

mask is taken to be the region itself, that is, the class butterflies is assumed to be possible 

everywhere. 

Three parameter settings that modulate the relative weight ascribed to roads and cities 

and detection as a function of richness are illustrated in Figure 4, all with 750N = : Setting #1 

has 5 /1000γ = , 0.0025η = ; Setting #2 has 5000γ = , 4.258E 6η = − ; Setting #3 has 

5 /1000γ = , 4.258E 6η = − . Simulation means that 750 artificial trials are made to run through 

the two-stage probability tree with specified probabilities ( ; )iS e γ  and ( ; )iD e η , and whenever a 

success results in the second stage, a new dot on the map is produced. There are less than 750 

points on each of these maps (550 for Setting #1, 252 for Setting #2, 261 for Setting #3), due to 

simulated failures that amount to visits with no detection. 

 Setting #1 is a situation where roads and cities play a decisive role in the recording of 

presences. Good accessibility gives rise to presences, despite the fact that species richness is 

relatively smaller. In contrast, presences in Setting #2 are mainly driven by the species richness, 

and accessibility plays little role. Setting #3 is somewhat intermediate; it is driven by richness 

but accessibility still produces a few isolated presences in less-rich areas. Despite our simplistic 



 
 

measures of accessibility, it is quite remarkable that the general character of these clusters of 

simulated points are able to reflect the general features displayed in Figure 1 (particularly Setting 

#1), in that points are distributed at random over the region, but clustered more around towns and 

roads and where butterflies abound. 

 What are realistic values of ,  ,γ η  and N  for butterflies and mammals, and are there 

distinguishing differences amongst collectors? This entails parameter estimation based on 

observed data, to be addressed in the next section. 

Setting #1 Setting #2

Setting #3

 

Figure 4: Simulated presence records for class butterflies, using the stated multinomial probability model, 

under parameter Settings #1, #2, and #3. The shades of red in the background correspond to actual species 

richness over the region. Dots are simulated presences taking into account the accessibility structure as a 

function of pictured roads and cities, as well as the relationship of detection with species richness. 



 
 

Fitting the model 

As described above, the intrinsic probability model is multinomial. We conceived N  trials 

giving rise to counts over 1t +  bins, where the total number of counts over the first t  bins is n . 

Let 1 2 1, , , ,t tX X X X +…  denote the observed counts. The number of (unobserved) zeros 

is 1 1

t

t ii
X N X N n+ =

= − = −∑ . Based on a multinomial density, one can then immediately write 

down the likelihood function of observed counts as a function of the parameters ,  ,γ η  and N : 
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This in itself provides a building block for statistical inference, particularly parameter estimation. 

Maximum likelihood estimates are obtained by maximizing the function L . 

 Because the main parameter of interest isγ , inference under presence of nuisance 

parameters ( N  andη ) is relevant. One extremely useful tool for this is the profile likelihood, 

defined as  

 ˆˆ( ) ( , ( ), ( ))PL L Nγ γ η γ γ= , 

where the values ˆ( )η γ  and ˆ ( )N γ  maximize ( , , )L Nγ η . This last maximization must be achieved 

numerically for each fixed value of γ . 

The point estimate γ̂  is obtained by maximizing ( )PL γ . But most importantly, 

instruments for quantifying uncertainty can also be found directly by considering this function. If 

x  is a proportion, an 100x× % likelihood interval is defined to be the set of all values of γ  such 

that ˆ( ) / ( )P PL L xγ γ ≥ . This in itself is meaningful for statistical inference, and using the standard 

approximation of ˆ2 log( ( ) / ( ))P PL Lγ γ−  via the 2χ  distribution with one degree of freedom, it is 

easy to show that the value 0.14x =  in a likelihood interval gives rise to an approximate 95% 

confidence interval for the one dimensional parameter γ . See Sprott(2000) and Kalbfleish 

(1985) for further details. The function ˆ( ) ( ) / ( )P P PR L Lγ γ γ=  is called the relative profile 

likelihood. 



 
 

An interesting experiment is to explore if the arbitrarily specified values of parameters 

can be recovered by using our simulated data sets depicted in Figure 4. Using these simulated 

data points and the profile likelihood approach for parameter estimation we obtain estimated 

values ˆˆ ˆ( , , ) (0.0043,0.0026,913)Nγ η =  for Setting #1 and ˆˆ ˆ( , , ) (0.0037,4.1E 6,1007)Nγ η = −  for 

Setting #3. Relative profile likelihood plots for γ  under each setting are presented in Figure 5. 

The true values of γ  are located well within the 0.14 likelihood intervals, confirming that 

estimation is not only feasible but surprisingly precise for the parameter of interest. Note, 

however, that errors in the estimates for N  are relatively less precise. 
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Figure 5: Relative profile likelihood plots for main parameter of interest, γ , for Setting #1 (left) and Setting 

#3 (right). The corresponding 0.14 likelihood intervals (approximate 95% confidence intervals), also plotted, 

are (0.0031, 0.0066) for Setting #1 and (0.0026, 0.0069) for Setting #3. The maxima of the curves correspond 

to the maximum likelihood estimate based on simulated data shown in Figure 4. The true value of γ , used in 

simulations, is also shown. 

 We now present results of this estimation process over our study region, for butterflies 

and mammals, using data of Figure 1. The point estimates of the parameters are 

ˆˆ ˆ( , , ) (5.8E 6,0.0416,3375)Nγ η = −  for butterflies, and ˆˆ ˆ( , , ) (1.05E 3,2.1E 6,1781)Nγ η = − −  for 

mammals. Corresponding 0.14 likelihood intervals for γ  are (4.0E-6, 8.2E-6) for butterflies and 

(8.2E-4, 14.6E-4) for mammals. Effects of the resulting probabilities ˆ( ; )S e γ  are shown in Figure 

6, in geographical space. A node g  is here plotted using a standardized color intensity-scale 

based on ˆ ˆ*( ; ) / *( ; )iC g C gγ γ∑ . It is interesting to note the very contrasting differences in 

sampling effort that are apparent between these two groups. Butterflies display a hotspot towards 



 
 

the center of the region whereas effort for mammals is heavily concentrated along mountain 

ranges. It is indeed true that the patterns of collections of butterflies and mammals in Mexico are 

widely different, with the former concentrated along highways and a few field stations and large 

cities (Soberón et al. 2000), and the latter much more regularly dispersed over the surface of the 

country (Medellin, pers. com.). The method we present here allows precise quantification of such 

contrasting patterns.  

 

Figure 6: Estimated effort, ˆ( ( ); )S gϕ γ , in geographical space. Butterflies at left, and mammals at right. 

Green dots are presences of the corresponding class. In readying an example in niche prediction to be 

discussed below, observed presences of the single butterfly species Zerene cesonia cesonia are superimposed 

on the left panel, using purple squares. 

 

Discussion 

At present, the number of “presence-only” registers of species that biologists can access is very 

large, and increasing. The Global Biodiversity Information Facility (GBIF) alone provides access 

to more than 10
8
 records, most of them georeferenced (www.gbif.org ) (Edwards 2004). 

However, generally speaking, this type of data has very significant sampling problems, since as 

we said, effort is not randomly distributed in space, and it is very uneven, with log-normal 

distributions of number of records per sample site (Graham et al. 2004; Iverson and Prasad 1998; 

Mora et al. 2008; Soberón et al. 2007; Soberón et al. 2000), and the treatment of. Conventional 

methods for describing and analyzing such kinds of data are not enough (Pearce and Boyce 

2006) and new approaches are needed, if biologist are going to make sense of this large and 

significant mass of data. 



 
 

 One avenue of development is to acknowledge explicitly the particularities of taxonomic 

data and develop: 1) ways to quantify the bias, and 2) procedures to extract as much information 

as possible from such biased but very abundant data. In this note we have shown how two 

sources of bias can be quantified by using ancillary data. ˆ( ; )S e γ is estimated by accessibility to 

roads and cities, since the “highway effect” is a well known problem of taxonomical collections. 

The detectability function, ( ; )D e η  is estimated by using another large set of data, namely the 

entire collection of butterflies, which represent the accumulated effort of many decades of 

scientists working over all the states of Mexico. 

What effect does sampling bias have on niche prediction for an individual species, based 

on presence-only data? BioP (Argaez et al. 2005) recognizes the role of non-homogeneous 

sampling effort and explicitly takes it into account. Figure 7 displays two different end results for 

predicted niches for sp. Zerene cesonia cesonia (whose presence records are shown in the left 

panel of Figure 6), one completely disregarding sampling effort (that is, assuming it has been 

uniform in geographical space) and another using the estimated effort for class butterflies 

developed previously. Although similar, there are a few notable, local, differences. When effort 

is explicitly taken into account, greater probability of presence is granted in both the NE and SW 

corners. But interpretation of the left panel in Figure 6 indicates that this conclusion follows 

different reasons. In the SW corner, an important number of presences of the species are found, 

but the sampling intensity for the class is relatively higher. In the NE corner, only a few 

presences occur nearby, but with less expended effort. What BioP is doing is to re-weigh 

empirical evidence according to sampling effort. 

 

Figure 7: Example of BioP predicted distributions for Zerene cesonia cesonia over study region with sampling 

effort assumed uniform in geographical space (left), and using estimated sampling effort (right). 



 
 

 All computations regarding sampling effort and likelihood methods were performed 

using Matlab and did not present critical issues. Numerical maximizations were achieved using 

the Nelder-Mead simplex search algorithm, which does not require any derivatives (fminsearch 

function in Matlab) and were well-behaved for the three-dimensional parameter. Regarding the 

discrete parameter N , embedding into a continuous interpolating function was achieved via the 

relationship ln( !) ln( ( 1))N N= Γ + . It was setting up multiple data sources via GIS that was more 

problematic. Estimation of effort is a specific module to be soon included within the BioP 

software. 
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